301 research outputs found

    The Two Micron All-Sky Survey: Removing the Infrared Foreground

    Get PDF
    We introduce the properties of the Two Micron All-Sky Survey (2MASS) survey for IAU Symposium 204. 2MASS is a near-infrared survey of the entire sky characterized by high reliability and completeness. Catalogs and images for 47% of the sky are now available online. This data release has been used by Wright (2000) and Cambr´esy et al. (2000) to subtract the stellar foreground at 1.25 and 2.2 microns from COBE DIRBE data, revealing the cosmological near-infrared background

    Near-Infrared Photometric Variability of Stars Toward the Chamaeleon I Molecular Cloud

    Get PDF
    We present the results of a J, H, and K_s photometric monitoring campaign of a 0.72 x 6 sq deg. area centered on the Chamaeleon I star forming region. Data were obtained on 15 separate nights over a 4 month time interval using the 2MASS South telescope. Out of a total of 34,539 sources brighter than the photometric completeness limits (J=16.0, H=15.2, K_s=14.8), 95 exhibit near-infrared variability in one or more bands. The variables can be grouped into a population of bright, red objects that are associated with the Chamaeleon I association, and a population of faint, blue variables that are dispersed over the full 6 deg of the survey and are likely field stars or older pre-main-sequence stars unrelated to the present-day Chamaeleon I molecular cloud. Ten new candidate members of Chamaeleon I, including 8 brown dwarf candidates, have been identified based on variability and/or near-infrared excess emission in the J-H vs. H-K_s color-color-diagram. We also provide a compendium of astrometry and J, H, and K_s photometry for previously identified members and candidate members of Chamaeleon I.Comment: To appear in AJ; see http://www.astro.caltech.edu/~jmc/variables/cham1

    Three New Cool Brown Dwarfs Discovered with the Wide-field Infrared Survey Explorer (WISE) and an Improved Spectrum of the Y0 Dwarf WISE J041022.71+150248.4

    Get PDF
    As part of a larger search of Wide-field Infrared Survey Explorer (WISE) data for cool brown dwarfs with effective temperatures less than 1000 K, we present the discovery of three new cool brown dwarfs with spectral types later than T7. Using low-resolution, near-infrared spectra obtained with the NASA Infrared Telescope Facility and the Hubble Space Telescope we derive spectral types of T9.5 for WISE J094305.98+360723.5, T8 for WISE J200050.19+362950.1, and Y0: for WISE J220905.73+271143.9. The identification of WISE J220905.73+271143.9 as a Y dwarf brings the total number of spectroscopically confirmed Y dwarfs to seventeen. In addition, we present an improved spectrum (i.e. higher signal-to-noise ratio) of the Y0 dwarf WISE J041022.71+150248.4 that confirms the Cushing et al. classification of Y0. Spectrophotometric distance estimates place all three new brown dwarfs at distances less than 12 pc, with WISE J200050.19+362950.1 lying at a distance of only 3.9-8.0 pc. Finally, we note that brown dwarfs like WISE J200050.19+362950.1 that lie in or near the Galactic plane offer an exciting opportunity to measure their mass via astrometric microlensing.Comment: Accepted for publication in the Astronomical Journa

    Dark Matter Constraints from the Sagittarius Dwarf and Tail System

    Get PDF
    2MASS has provided a three-dimensional map of the >360 degree, wrapped tidal tails of the Sagittarius (Sgr) dwarf spheroidal galaxy, as traced by M giant stars. With the inclusion of radial velocity data for stars along these tails, strong constraints exist for dynamical models of the Milky Way-Sgr interaction. N-body simulations of Sgr disruption with model parameters spanning a range of initial conditions (e.g., Sgr mass and orbit, Galactic rotation curve, halo flattening) are used to find parameterizations that match almost every extant observational constraint of the Sgr system. We discuss the implications of the Sgr data and models for the orbit, mass and M/L of the Sgr bound core as well as the strength, flattening, and lumpiness of the Milky Way potential.Comment: 6 pages, 0 figures. Contribution to proceedings of ``IAU Symposium 220: Dark Matter in Galaxies'', eds. S. Ryder, D.J. Pisano, M. Walker, and K. Freema

    Disentangling the Origin and Heating Mechanism of Supernova Dust: Late-Time Spitzer Spectroscopy of the Type IIn SN 2005ip

    Get PDF
    This paper presents late-time near-infrared and {\it Spitzer} mid-infrared photometric and spectroscopic observations of warm dust in the Type IIn SN 2005ip in NGC 2906. The spectra show evidence for two dust components with different temperatures. Spanning the peak of the thermal emission, these observations provide strong constraints on the dust mass, temperature, and luminosity, which serve as critical diagnostics for disentangling the origin and heating mechanism of each component. The results suggest the warmer dust has a mass of ∼5×10−4 \sim 5 \times 10^{-4}~\msolar, originates from newly formed dust in the ejecta, or possibly the cool, dense shell, and is continuously heated by the circumstellar interaction. By contrast, the cooler component likely originates from a circumstellar shock echo that forms from the heating of a large, pre-existing dust shell ∼0.01−0.05\sim 0.01 - 0.05~\msolar~by the late-time circumstellar interaction. The progenitor wind velocity derived from the blue edge of the He 1 1.083 \micron~P Cygni profile indicates a progenitor eruption likely formed this dust shell ∼\sim100 years prior to the supernova explosion, which is consistent with a Luminous Blue Variable (LBV) progenitor star.Comment: 12 pages, 10 figures, Accepted to Ap

    Cosmic Structure Traced by Precision Measurements of the X-Ray Brightest Galaxy Clusters in the Sky

    Get PDF
    The current status of our efforts to trace cosmic structure with 10^6 galaxies (2MASS), 10^3 galaxy clusters (NORAS II cluster survey), and precision measurements for 10^2 galaxy clusters (HIFLUGCS) is given. The latter is illustrated in more detail with results on the gas temperature and metal abundance structure for 10^0 cluster (A1644) obtained with XMM-Newton.Comment: 4 pages; to be published in the Proceedings of the Conference: The Emergence of Cosmic Structure, College Park, MD (2002), editors: S.S. Holt and C. Reynolds; also available at http://www.reiprich.ne

    Late-Time Circumstellar Interaction in a Spitzer Selected Sample of Type IIn Supernovae

    Get PDF
    Type IIn supernovae (SNe IIn) are a rare (< 10%) subclass of core-collapse SNe that exhibit relatively narrow emission lines from a dense, pre-existing circumstellar medium (CSM). In 2009, a warm Spitzer survey observed 30 SNe IIn discovered in 2003 - 2008 and detected 10 SNe at distances out to 175 Mpc with unreported late-time infrared emission, in some cases more than 5 years post-discovery. For this single epoch of data, the warm-dust parameters suggest the presence of a radiative heating source consisting of optical/X-ray emission continuously generated by ongoing CSM interaction. Here we present multi-wavelength follow-up observations of this sample of 10 SNe IIn and the well-studied Type IIn SN 2010jl. A recent epoch of Spitzer observations reveals ongoing mid-infrared emission from nine of the SNe in this sample. We also detect three of the SNe in archival WISE data, in addition to SNe 1987A, 2004dj, and 2008iy. For at least five of the SNe in the sample, optical and/or X-ray emission confirms the presence of radiative emission from ongoing CSM interaction. The two Spitzer nondetections are consistent with the forward shock overrunning and destroying the dust shell, a result that places upper limits on the dust-shell size. The optical and infrared observations confirm the radiative heating model and constrain a number of model parameters, including progenitor mass-loss characteristics. All of the SNe in this sample experienced an outburst on the order of tens to hundreds of years prior to the SN explosion followed by periods of less intense mass loss. Although all evidence points to massive progenitors, the variation in the data highlights the diversity in SN IIn progenitor evolution. While these observations do not identify a particular progenitor system, they demonstrate that future, coordinated, multi-wavelength campaigns can constrain theoretical mass-loss models.Comment: 10 pages, 6 figures, accepted to AJ (with comments
    • …
    corecore